\square

B. TECH.
 (SEM IV) THEORY EXAMINATION 2022-23
 DIGITAL ELECTRONICS

Time: 3 Hours
Total Marks: 100
NOTE: 1. Attempt all Sections. If require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$
(a) Interpret the binary number (1011) into (i) Gray code (ii) Excess-3 Code.
(b) Evaluate (1011) - (1101) using 1's and 2's complement method.
(c) Differentiate between the serial and parallel adder.
(d) How many 4 X 1 multiplexers are required to implement 64 X 1 multiplexer.
(e) What is the difference between characteristic and excitation table.
(f) Differentiate between combinational and sequential circuits.
(g) How many address lines are needed to represent 8 K meaning.
(h) Define term propagation delay.
(i) Define race around condition in JK flip flop.
(j) Give the difference between PAL and PLA.

SECTION B
2. Attempt any three if the following:
$10 \times 3=30$
(a) Implement the Pólean function $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(1,2,3,4,6,7)$ using NAND gates.
(b) Construct a (1) adder and implement the full adder with the help of half adders. Also imploynent the full adder with NAND gates only.
(c) Discuss (-xcitation table for SR, JK, T and D flip flop.
(d) Design 8Kx8 RAM memory system, using 1Kx8 memory ICs.
(e) Discuss Mealy and Moore finite state machine with an example.

SECTION C

3. Attempt any one part of the following:

10x1=10
(a) Simplify $\mathrm{Y}=\sum \mathrm{m}(3,6,7,8,10,12,14)+\mathrm{d}(0,1,6,15)$ using K-map method and implement the simplified circuit using logic gates.
(b) Minimize the following Boolean function using tabulation method:

F (a,b,c,d,e) $=\sum \mathrm{m}(0,4,12,16,19,24,27,28,29,31)$
4. Attempt any one part of the following:
$10 x 1=10$
(a) Design a BCD adder using 4-bit parallel adder.
(b) Draw and Explain 2-bit magnitude comparator. Also represent output with the help of logic diagram.
5. Attempt any one part of the following:
(a) Design and implement MOD-10 synchronous counter.
(b) For the clocked JK Flip-Flop write the state table, state equation with state diagram.
6. Attempt any one part of the following:
$10 \times 1=10$
(a) Why ECL is better? Implement NAND gate with DTL and TTL.
(b) Define noise margin, Fan-in, Fan-out as characteristics of logic families. Implement NAND gate with CMOS.
7. Attempt any one part of the following:
(a) Explain State Reduction and assignment with suitable example.
(b) Design a sequential circuit with two flip flops, A \& B and one input X. When $\mathrm{X}=0$ state of the circuit remains the same, when $\mathrm{X}=1$ circuit passes through the state transition from 00 to 01 to 11 to 10 back to 00 and repeat.

